Surfaces of Biomaterials

Three lectures:

1.23.05 – Surface Properties of Biomaterials

- 1.25.05 Surface Characterization
- 1.27.05 Surface and Protein Interactions

Three points:

- 1 Surfaces have unique properties
- 2 We can (and do) measure these properties
- 3 Because they affect biocompatibility

Review

Bulk Materials are described by:

- Chemical / Molecular composition
- Atomic / Molecular structure (crystallinity, etc)
- Mechanics (elasticity, etc)
- Shape

Surfaces of materials have unique descriptive properties:

- · Excess surface free energy
- Atomic / Molecular composition different than bulk
- · Chemical composition (reactivity) different than bulk
- Topography (vs. shape)

Surface characterization provides surface specific information about these properties.

Characterization is the method by which one develops a data set that describes properties of the sample. Because of limited possibilities this process is:

- · Discrete / Reliant on methodology
- Application specific
- · Often material specific
- Resource limited

Surface Analysis Techniques for Biomaterials

- Contact Angle Measurements, Dynamic Contact Angle (DCA)
- Electron Spectroscopy for Chemical Analysis (ESCA / XPS)
- Auger Electron Spectroscopy (AES)
- Near Edge X-ray Absorption Fine Structure (NEXAFS)
- Secondary Ion Mass Spectroscopy (SIMS)
- Scanning Probe Microscopy (AFM)
- Sum Frequency Generation (SFG)
- Surface Plasmon Resonance (SPR)
- Optical Imaging and Spectroscopy (microscopy, TIRF)
- Ellipsometry
- Scanning Electron Microscopy (SEM)
- Infrared Spectroscopy (FTIR)
- Many more techniques and more acronyms...

00	
Property	Techniques
Composition	ESCA, Auger, SIMS, NEXAFS
Structure	SIMS, ESCA, NEXAFS, FTIR, SFG
Orientation	NEXAFS, FTIR, SFG
Spatial Distribution	Imaging SIMS, AFM, microscopy
Topography	AFM, profilometry
Thickness	ellipsometry, ESCA, AFM, SPR
Energetics	Contact angle

. .

. .

Contact angle methods

Modes:	Sessile drop, captive bubble, Wilhelmy plate, dynamic
Probe:	Small Drop of Liquid or Bubble
Data:	Contact Angle (θ)
Sample:	Any material interface that can support the probe
Principle: solid	Interfacial tension can be used to estimate surface energetics
Information:	Work of adhesion, Surface energetics
Depth:	Â's
Spatial Resolution:	mm ²
Sensitivity:	Depends on chemistry
Relative Cost:	Inexpensive
Other:	Similar techniques can be used for liquids
	Can be used to estimate solid surface energies

Instrument

Force balance (equilibrium) method

Easy – Place a drop or bubble on a rigid surface and measure the geometry. The "contact angle" θ can be related to surface tension with the Young-Dupré equation:

$$\gamma_{23} = \gamma_{12} \cdot \cos \theta_1 + \gamma_{13}$$

Slightly more complicated if angle is not measured directly.

(c) Sessile Drop for $\theta > 90^{\circ}$ $\theta = 90^{\circ} + \cos^{-1} \frac{4H}{4h^{2}+t^{2}}$

Surface energy of a solid

Remember that the surface tension of solids is not experimentally accessible.

One can use the multiple probe approach to estimate the surface energies of solids.

There are two prominent methods:

- Critical surface tension (γ_c) method (Zisman method)
- "Independent Surface Action" (Fowkes, Good et al. method)

Zisman's method

High surface energy liquids will not spread on low surface energy solids as this will not lower their excess surface free energy. Too bad, because a liquid that completely wets the surface could give you an estimate of the solid's surface tension. Fortunately, one can extrapolate.....:

Fowkes' method

Solid – liquid interaction can be considered to be due to addition of non-polar (dispersive or LW) and polar (Lewis acid-base, - and +) interactions between the probe and solid. These components of surface energy are known for a series of liquids – so use three probes, find θ 's and solve the equation below for γ_{S}^{LW} , γ_{S}^{*} and γ_{S}^{*} .

A limitation of this technique is that most polar liquids do not have a strong $\gamma_{\,s}^{\,*}$ component. (water is the exception)

Photoelectric Techniques		
Alias:	ESCA (Electron Spectroscopy for Chemical Analysis)	
Modes:	XPS (X-ray photoelectron spectroscopy), Auger Spectroscopy, UPS (UV photoelectron	
spectroscopy)		
Probe:	Photons (X-rays, UV)	
Signal:	Electrons	
Information:	Elemental composition and chem. bonding	
Sample:	Any that can withstand ultra-high vacuum	
Principle:	Photoelectric effect (think Einstein)	
Depth:	100 Å (1000+ Å in destructive mode)	
Spatial Resolution:	μm²	
Sensitivity:	few % error not unreasonable	
Relative Cost:	Very expensive	
Other:	Semi-quantitative to quantitative	
	NEXAFS is an extension of this technique that gives orientation information	
	Imaging modes	

SIMS		
Alias:	Secondary Ion Mass Spectroscopy, ToF-SIMS	
Modes:	static and dynamic, secondary electron	
Probe:	lons (Ar ⁺ , Ga ⁺ , Cs ⁺ , C ₆₀ ⁺ , etc.), keV	
Signal:	Secondary lons (from sample)	
Information:	Elemental and Molecular Composition	
Sample:	Any that can withstand ultra-high vacuum	
Principle:	Bombardment ions liberate secondary particles from the surface, secondary ions can be detected	
for mass		
Depth:	10 Å (more in dynamic mode)	
Spatial Resolution:	less than 1 μm²	
Sensitivity:	"very high"	
Relative Cost:	Expensive	
Other:	Semi-quantitative to quantitative	
	Can resolve isotopes	
	Imaging modes	
	ToF detectors lead to exact mass detection	

SPM		
Alias:	Scanning Probe Microscopy, Scanning Force Microscopy	
Modes:	Lots: atomic force (AFM), tunneling (STM), magnetic, kelvin probe, electrostatic, acoustical, calorimetry	
Probe:	Cantilever tip – single atom!	
Signal:	Position of tip, etc	
Information:	Topography, etc	
Sample:	Just about anything	
Principle:	Raster a small tip over the surface to collect data and reconstruct image	
Depth:	5 or less Å	
Spatial Resolution:	as low as 1 Å ²	
Sensitivity:	Atomic sensitivity	
Relative Cost:	Moderate to expensive	
Other:	Near-field Scanning Optical Microscopy (NSOM)	
	Tip functionalization (change force regime or promote specific binding)	

AFM – Caution!

There is a great tendency to "see what you want" to in AFM images, although multimode operation helps to reduce interpretations. This technique has not-so-obvious limitations:

- Tip contamination
- · Piezo non-linearities and drift
- Tips are rarely characterized for spring constant, geometry
- Artifacts (double tip)
- topography / phase convolution in lateral force
- "near sightedness"